Artificial Intelligence in Agriculture (Mar 2025)
Development of automatic wheat seeding quantity control system based on Doppler radar speed measurement
Abstract
With advancements in agricultural technology, the full mechanization of rice straw wheat planting has been achieved. However, issues such as missed seeding, uneven row spacing, and poor uniformity of row replenishment often arise due to wheel slippage in wheeled wheat seeders. These problems manual replanting after emergence, reducing efficiency and increasing labor costs. To address these challenges, a speed-adaptive wheat seeding control system based on speed radar was developed. This system comprises a pneumatic wheat seeding device, an automatic speed-following control system, a human-machine interface, and a stepper motor. Leveraging an embedded controller, the system dynamically adjusts motor speed based on real-time forward speed to ensure precise seeding. Using fuzzy PID control, the system dynamically adjusts motor speed, achieving row spacing consistency below 3.9 % and seeding stability within 1.3 %, even at varying speeds. This system addresses critical challenges in precision agriculture, enhancing planting efficiency and reducing labor costs. This innovation enhances planting efficiency, reduces labor costs, and ensures adaptability to varying tractor speeds, meeting the precision requirements of wheat planting.