The Astrophysical Journal Supplement Series (Jan 2024)

A Sample of Am and Ap Candidates from LAMOST DR10 (v1.0) Based on the Ensemble Regression Model

  • Hai-Feng Yang,
  • Rui Wang,
  • Jiang-Hui Cai,
  • A-Li Luo,
  • Bing Du,
  • Yan-Ting He,
  • Mei-Hong Su,
  • Chen-Hui Shi,
  • Xu-Jun Zhao,
  • Ya-Ling Xun,
  • Yi-Nan Yuan

DOI
https://doi.org/10.3847/1538-4365/ad4107
Journal volume & issue
Vol. 272, no. 2
p. 43

Abstract

Read online

Large samples of Am and Ap stars are helpful in studying the interplay between phenomena like atomic diffusion, magnetic fields, and stellar rotation in stellar astrophysics. Existing samples of Am and Ap stars, mostly obtained from spectral data with a signal-to-noise ratio in the g band (S/Ng) greater than 50, can benefit from expansion by exploring spectra with lower S/Ng. Therefore, this paper proposes an ensemble regression model applicable to spectra with a minimum S/Ng of 30. Using the model, we identify 21,361 Am candidates, of which 11,614 are new, and 6182 Ap candidates, of which 4978 are new, from LAMOST DR10. The Am sample size has increased by 60% and the Ap sample size has increased by 180% compared to the previous sample. In terms of effective temperature ( T _eff ), the Am candidates range mainly from 6000 to 8500 K, while the Ap candidates range from 6000 to 11,700 K. The surface gravity ( $\mathrm{log}g$ ) distributions for Am and Ap candidates differ in the range of 3.25–4.75 dex. The number of Am candidates increases stepwise, in contrast to the relatively uniform distribution of Ap candidates across the entire surface gravity range. Regarding metallicity ([Fe/H]), Am candidates typically range from −0.75 to 0.38 dex, peaking near 0 dex, while Ap candidates are distributed from −1.38 to 0.38 dex, with a peak near −0.5 dex.

Keywords