Cells (May 2022)

Loss of Neural Automaticity Contributes to Slower Walking in COPD Patients

  • S. Ahmed Hassan,
  • Leandro Viçosa Bonetti,
  • Karina Tamy Kasawara,
  • Matthew B. Stanbrook,
  • Dmitry Rozenberg,
  • W. Darlene Reid

DOI
https://doi.org/10.3390/cells11101606
Journal volume & issue
Vol. 11, no. 10
p. 1606

Abstract

Read online

The physical impairments (e.g., slower walking speed) in patients with chronic obstructive pulmonary disease (COPD) have been attributed to peripheral characteristics (e.g., muscle atrophy). However, cognitive impairment may compromise motor control including walking automaticity. The objective of this study was to investigate PFC neural activity, evaluated using changes in oxygenated hemoglobin (ΔO2Hb), during preferred paced walking (PPW) in COPD patients and age-matched controls. The ΔO2Hb from the left and right dorsolateral PFC was measured using functional near-infrared spectroscopy. Fifteen COPD patients (age: 71 ± 8) and twenty age-matched controls (69 ± 7 years) participated. Two-way mixed ANOVA demonstrated that O2Hb in both groups decreased during PPW from the start (quintile 1; Q1) to the end (quintile 5; Q5) in the left dorsolateral and medial PFC. Q1 was comprised of the data during the first 20% of the task, while Q5 included data collected in the last 20% of the task duration. PPW duration ranged between 30.0 and 61.4 s in the control group and between 28.6 and 73.0 s in COPD patients. COPD patients demonstrated a higher O2Hb in Q5 compared to the negative O2Hb in controls in the right medial and dorsolateral PFC during PPW. PPW velocity was lower in COPD patients compared to controls (1.02 ± 0.22 vs. 1.22 ± 0.14 m/s, p = 0.005). Healthy older controls exhibited automaticity during walking unlike patients with COPD. The lesser decrease in O2Hb in COPD patients may be attributed to increased executive demands or affect-related cues (e.g., pain or dyspnea) during walking.

Keywords