Innovative Self‐Assembly of 15‐Mer Chimeric α‐Peptide–Oligourea Foldamers toward Cl−‐Selective Ion Channels
Chiranjit Dutta,
Pannaga Krishnamurthy,
Dandan Su,
Jianwei Li,
Sung Hyun Yoo,
Gavin W. Collie,
Morgane Pasco,
Jingsong Fan,
Min Luo,
Mihail Barboiu,
Gilles Guichard,
R. Manjunatha Kini,
Prakash Kumar
Affiliations
Chiranjit Dutta
Department of Biological Sciences National University of Singapore Singapore 117543 Singapore
Pannaga Krishnamurthy
Department of Biological Sciences National University of Singapore Singapore 117543 Singapore
Dandan Su
Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM, CNRS Place Eugène Bataillon, CC 047 F‐34095 Montpellier France
Jianwei Li
Department of Biological Sciences National University of Singapore Singapore 117543 Singapore
Sung Hyun Yoo
Institut Européen de Chimie et Biologie Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248 2 rue Robert Escarpit F‐33600 Pessac France
Gavin W. Collie
Discovery Sciences R&D, AstraZeneca Cambridge UK
Morgane Pasco
Institut Européen de Chimie et Biologie Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248 2 rue Robert Escarpit F‐33600 Pessac France
Jingsong Fan
Department of Biological Sciences National University of Singapore Singapore 117543 Singapore
Min Luo
Department of Biological Sciences National University of Singapore Singapore 117543 Singapore
Mihail Barboiu
Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM, CNRS Place Eugène Bataillon, CC 047 F‐34095 Montpellier France
Gilles Guichard
Institut Européen de Chimie et Biologie Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248 2 rue Robert Escarpit F‐33600 Pessac France
R. Manjunatha Kini
Department of Biological Sciences National University of Singapore Singapore 117543 Singapore
Prakash Kumar
Department of Biological Sciences National University of Singapore Singapore 117543 Singapore
Constructing artificial ion channels is a challenging task. Herein, the de novo design of transmembrane ion channels made up of amphiphilic peptide–oligourea chimeric helices is described. They consist of an oligourea segment (7‐mer) attached to the C‐terminus of a short peptide (8‐mer). Mass spectrometry (MS) and transmission electron microscopy (TEM) analyses show that in an aqueous solution, two of these chimeras (HPU‐E and HPU‐N) independently form defined oligomeric structures. TEM also shows that they form fiber bundles. The third related chimera HPU‐F does not oligomerize (MS) but forms spherical nanostructures (TEM). HPU‐E and HPU‐N exhibit anion transport activity across lipid bilayers via antiport mechanism (HPU‐N > HPU‐E). The anion selectivity of HPU‐N is Cl−>NO3− > Br−>SCN− > I− > AcO−>F−, which can be due to anion binding within the channels rather than size exclusion. Patch‐clamp data support HPU‐N's Cl− selectivity (PCl−/PI− = 3.26). X‐ray crystal structure (1.77 Å) of HPU‐N reveals well‐packed α‐helices, and cryo‐electron microscopy data shows the formation of nanotubes (13.7 Å diameter pores) and transmembrane channels. The study shows that α‐peptide–oligourea‐based de novo design can yield unique bioactive molecules with defined structures and functions.