Foods (Jan 2023)

Preparation Process Optimization of Peptides from <i>Agaricus blazei</i> Murrill, and Comparison of Their Antioxidant and Immune-Enhancing Activities Separated by Ultrafiltration Membrane Technology

  • Xian-Guo Zou,
  • Yun Chi,
  • Yu-Qin Cao,
  • Miao Zheng,
  • Ze-Yuan Deng,
  • Ming Cai,
  • Kai Yang,
  • Pei-Long Sun

DOI
https://doi.org/10.3390/foods12020251
Journal volume & issue
Vol. 12, no. 2
p. 251

Abstract

Read online

Agaricus blazei murrill (ABM), a large fungus, is reported to have extensive biological activities but the antioxidant and immune-regulatory capacities have been less studied and the components responsible for the functions are unclear. This study prepared ABM peptides (ABMP) using ultrasound-assisted enzymatic extraction (UAEE) strategy and cascade ultrafiltration (UF) membrane technology. The UAEE extraction conditions were optimized using response surface methodology (RSM) with four factors and three levels to achieve the maximum ABMP yield (34.03%); the optimal conditions were an enzyme amount of 4%, ratio of ABM to water of 1:30, ultrasonic power of 360 W, and ultrasonic time of 30 min. Four ABMP fractions were obtained after UF with different pore size and their antioxidant and immune-regulatory abilities were evaluated and compared. The results showed that they could effectively scavenge DPPH, hydroxyl, and ABTS radicals, especially for ABMP-2; the scavenging rate of the above radicals were 79.31%, 63.60%, and 96.08%, respectively. In addition, four ABMP fractions also activated macrophage activity through strengthening phagocytosis and the production of NO, IL-6, IL-1β, and TNF-α in a dose-dependent manner. Notably, the ABMP-2 fraction with a MW of 3–5 kDa and peptide purity of 82.88% was found to have the best effect, showing the maximum phagocytosis (189.37%) as well as NO (7.98 μM), IL-6 (195.05 pg/mL), IL-1β (876.15 pg/mL), and TNF-α (1620 pg/mL) secretion at a treatment concentration of 150 μg/mL. The findings indicated that the ABMP, especially for the separate ABMP-2, could be used as dietary supplements and have the potential to be exploited as immune-enhancing agents.

Keywords