EPJ Web of Conferences (Jan 2021)

TIME-DEPENDENT HOMOGENIZATION FOR PRESSURIZED HEAVY-WATER REACTORS

  • Schwanke Peter,
  • Nichita Eleodor

DOI
https://doi.org/10.1051/epjconf/202124706021
Journal volume & issue
Vol. 247
p. 06021

Abstract

Read online

A new time-dependent homogenization approach that accounts for inter-assembly leakage has recently been proposed. The new technique extends Generalized Equivalence Theory (GET) to transient simulations through the use of time-dependent, leakage-corrected discontinuity factors that are calculated at each time step by means of a global-local iterative approach to account for the effect of neighbouring nodes so that highly heterogeneous cores are more accurately modelled than when employing single-node, zero-node-boundary-current Assembly Discontinuity Factors (ADFs). The technique has been previously tested for a one-dimensional, two-energy-group, BWR-like benchmark. The present work expands the analysis to a one-dimensional, two-energy-group, Pressurized Heavy-Water Reactor (PHWR) configuration. The PHWR configuration consists of 22 fuel nodes bounded on either side by two nodes of heavy-water (D2O) reflector. Each fuel node spans 28.575 cm and is a one-dimensional stylized representation of a 37-element, natural uranium fuel bundle with D2O coolant residing in a pressure tube that in turn resides in a calandria tube surrounded by D2O moderator. A simple transient induced by instantaneous half-core voiding of the D2O coolant is studied. Three types of calculations are performed: A reference, heterogeneous-node, fine-mesh calculation, a standardly-homogenized-node calculation and a GET-homogenized-node (using ADFs) calculation. The root-mean-square percent errors introduced by standard homogenization and ADF-based homogenization for kinetics calculations in PHWR cores are found to be 4% and 5%, respectively, after 0.5 s. This suggests that the use of a time-dependent homogenization method is desirable, and its use is shown to reduce the RMS errors to a maximum of 0.003% over the course of the transient. The conclusion is that although PHWR cores are not extremely heterogeneous, the accuracy of transient modelling for PHWRs is improved when using time-dependent homogenization over conventional ADFs and that the newly-developed time-dependent homogenization method promises to offer substantial improvements in accuracy for transient results with particular relevance to safety analyses.

Keywords