Green Energy & Environment (Jul 2017)
A comprehensive review on recent progress in aluminumâair batteries
Abstract
The aluminumâair battery is considered to be an attractive candidate as a power source for electric vehicles (EVs) because of its high theoretical energy density (8100 Wh kgâ1), which is significantly greater than that of the state-of-the-art lithium-ion batteries (LIBs). However, some technical and scientific problems preventing the large-scale development of Alâair batteries have not yet to be resolved. In this review, we present the fundamentals, challenges and the recent advances in Alâair battery technology from aluminum anode, air cathode and electrocatalysts to electrolytes and inhibitors. Firstly, the alloying of aluminum with transition metal elements is reviewed and shown to reduce the self-corrosion of Al and improve battery performance. Additionally for the cathode, extensive studies of electrocatalytic materials for oxygen reduction/evolution including Pt and Pt alloys, nonprecious metal catalysts, and carbonaceous materials at the air cathode are highlighted. Moreover, for the electrolyte, the application of aqueous and nonaqueous electrolytes in Alâair batteries are discussed. Meanwhile, the addition of inhibitors to the electrolyte to enhance electrochemical performance is also explored. Finally, the challenges and future research directions are proposed for the further development of Alâair batteries. Keywords: Aluminumâair battery, Aluminum anode, Air cathode, Oxygen reduction reaction, Electrolytes