Microbiology Spectrum (Apr 2022)

Subinhibitory Concentration of Colistin Promotes the Conjugation Frequencies of Mcr-1- and blaNDM-5-Positive Plasmids

  • Xia Xiao,
  • Fuxin Zeng,
  • Ruichao Li,
  • Yuan Liu,
  • Zhiqiang Wang

DOI
https://doi.org/10.1128/spectrum.02160-21
Journal volume & issue
Vol. 10, no. 2

Abstract

Read online

ABSTRACT Horizontal gene transfer (HGT) plays a significant role in the spread of antibiotic resistance genes (ARGs). Most reported compounds promote HGT by increasing the cell membrane permeability. Colistin has been reported to increase the cell membrane permeability when exhibiting its antibacterial effect. Therefore, this study aimed to investigate the potential role of colistin in facilitating the dissemination of ARGs via plasmid conjugation by establishing an in vitro mating model. Three strains Escherichia coli (E. coli) DH5α, E. coli L65, and E. coli LD67-1 carrying plasmid RP4-7, blaNDM-5 positive IncX3 plasmid, and mcr-1 positive IncI2 plasmid, respectively, were regarded as the donor strains and E. coli J53 as the recipient strain. Exposure to subinhibitory concentrations of colistin (1/4, 1/8, 1/16 MIC) significantly stimulated the conjugation frequency of RP-4 plasmid, wide-type IncI2 and IncX3 plasmid. Scanning electron microscopy revealed the shrunken cell membrane after colistin treatment, whereas propidium iodide dye and 1-N-Phenylnaphthylamine fluorescent probe showed the increased cell membrane permeability. Additionally, the expression level of the outer membrane proteins (ompF and ompC) was increased. These results indicate a break in the membrane barrier. The expression of the mating pair formation gene (trbBp) was promoted and the expression of the global regulatory genes (korA, trbA), which downregulates trbBp expression, was inhibited. Thus, the production of the mating pairing machine could be elevated after colistin exposure. These findings aid in understanding the hidden risks of colistin on the spread of antimicrobial resistance. IMPORTANCE Antimicrobial resistance (AMR) dissemination is a growing global threat. As a last-resort treatment against multidrug-resistant and extensively drug-resistant Gram-negative bacteria, colistin has been used for prophylactic and therapeutic purposes in veterinary medicine. Previous studies have reported the presence of colistin residues in the intestinal tract and feces. The role of colistin in facilitating the conjugation frequency of mcr-1- and blaNDM-5-positive plasmids was confirmed in this study along with elucidating its potential mechanisms. This study raises awareness of the potential AMR dissemination roles induced by colistin in environmental settings.

Keywords