Applied Sciences (Apr 2024)

Preventive Maintenance Decision-Making Optimization Method for Airport Runway Composite Pavements

  • Jianming Ling,
  • Zengyi Wang,
  • Shifu Liu,
  • Yu Tian

DOI
https://doi.org/10.3390/app14093850
Journal volume & issue
Vol. 14, no. 9
p. 3850

Abstract

Read online

Long-term preventive maintenance planning using finite annual budgets is vital for maintaining the service performance of airport runway composite pavements. Using the pavement condition index (PCI) to quantify composite pavement performance, this study investigated the PCI deterioration tendencies of middle runways, terminal runways, and taxiways and developed prediction models related to structural thickness and air traffic. Performance jump (PJ) and deterioration rate reduction (DRR) were used to measure maintenance benefits. Based on 112 composite pavement sections in the Long-term Pavement Performance Program, this study analyzed the influences of five typical preventive maintenance technologies on PJ, DRR, and PCI deterioration rates. The logarithmic regression relationship between PJ and PCI was obtained. For sections treated with crack sealing and crack filling, the DRR was nearly 0. For sections treated with fog seal, thin HMA overlay, and hot-mix recycled AC, the DRR was 0.2, 0.7, and 0.8, respectively. To solve the multi-objective maintenance problem, this study proposed a decision-making optimization method based on dynamic programming, and the solution algorithm was optimized, which was applied in a five-year maintenance plan. Considering different PCI deterioration tendencies of airport regions, as well as PJ, DRR, and costs of maintenance technologies, the preventive maintenance decision-making optimization method meets performance and financial requirements sufficiently.

Keywords