Atmosphere (Sep 2020)

Vertical Profiles of Wind-Blown Sand Flux over Fine Gravel Surfaces and Their Implications for Field Observation in Arid Regions

  • Jiaqi Liu,
  • Reiji Kimura,
  • Jing Wu

DOI
https://doi.org/10.3390/atmos11101029
Journal volume & issue
Vol. 11, no. 10
p. 1029

Abstract

Read online

We used a compact boundary layer wind tunnel equipped with a turbulence generator and a piezoelectric blown-sand meter to investigate the effects of the surface coverage of fine gravel on wind-blown sand flux. The vertical profile of wind-blown sand over a flat sand surface showed an exponential distribution at all wind speeds, whereas the profile over gravel surfaces of 20% or greater coverage showed a non-monotonic vertical distribution. At 20% to 30% gravel coverages, a peak of wind-blown sand flux developed between 6 and 10 cm above the ground at all wind speeds because of less energy loss due to grain-bed collisions at that level. To analyze the erosional state of wind-blown sand, we used the Wu–Ling index (λ) of the mass-flux density of sand-bearing wind. Values of λ for all gravel coverages were greater than 1 at all wind speeds, indicating an unsaturated (erosional) state. Moreover, we found that the wind-blown sand flux at 4 cm height accounted for about 20% of the total flux regardless of wind speed and gravel coverage. This finding can simplify future estimations of total near-surface wind-blown sand flux based on field observations because such measurements can be taken at just one height.

Keywords