Data Science Journal (Mar 2024)

Risky Business: Data-At-Risk in a Dynamic and Evolving Multidisciplinary Research Environment

  • Louise H. Patterton,
  • Theo J. D. Bothma,
  • Martie J. van Deventer

DOI
https://doi.org/10.5334/dsj-2024-011
Journal volume & issue
Vol. 23
pp. 11 – 11

Abstract

Read online

At-risk data is an unfortunate research reality and can be present in all data formats in a range of research disciplines. This is defined as data that are at risk of loss due to various factors, including deterioration of the media, lack of accompanying documentation and data that exists in non-digital formats, which are often irreplaceable. Continued access to older data has a range of benefits. The factors that place valuable data at risk are therefore a cause for concern. This paper reports on a multi-method case study, comprising a survey and interviews. A web-based questionnaire was distributed to all research group leaders based at a leading South African research institute. This was followed by one-on-one interviews that were held with a sub-section of the same group of researchers. The combined findings of the two methods enabled a picture to be formed regarding factors that jeopardise research data, data rescue obstacles that the researchers encountered and the state of data rescue at the institute. Several recommendations and strategies are put forward to address identified risk factors and challenges. Suggestions include the launch of a data rescue project, awareness training around data at risk, involving the institute’s library and information services (LIS) section in data rescue and launching continued efforts to acquire a dedicated institutional data repository. It is also important to ensure that the scope of project risk management includes data considerations. The combined implementation of recommendations is anticipated to ensure the accessibility and usability of older at-risk data and reduce the chances of current and future data becoming compromised.

Keywords