Neurobiology of Disease (Jun 2007)
Astrocyte-specific heme oxygenase-1 hyperexpression attenuates heme-mediated oxidative injury
Abstract
In prior studies, we have observed that HO activity protects astrocytes from heme-mediated injury, but paradoxically increases neuronal injury. In this study, we tested the hypothesis that an adenovirus encoding the human HO-1 gene driven by an enhanced glial fibrillary acidic protein promoter (Ad-GFAP-HO-1) would increase HO-1 expression selectively in astrocytes, and provide cytoprotection. Treatment with 100 MOI Ad-GFAP-HO-1 for 24 h resulted in HO-1 expression that was 6.4-fold higher in cultured primary astrocytes than in neurons. Astrocyte HO activity was increased by approximately fourfold over baseline, which was sufficient to reduce cell death after 24-h hemin exposure by 60%, as assessed by both MTT and LDH release assays. A similar reduction in cell protein oxidation, quantified by carbonyl assay, was also observed. These results suggest that HO-1 transgene expression regulated by an enhanced GFAP promoter selectively increases HO-1 expression in astrocytes, and is cytoprotective. Further investigation of this strategy in vivo is warranted.