Energies (Dec 2023)

Development of Transpiration-Type Thermoelectric-Power-Generating Material Using Carbon Nanotube Composite Papers with Capillary Action and Heat of Vaporization

  • Yudai Kamekawa,
  • Koya Arai,
  • Takahide Oya

DOI
https://doi.org/10.3390/en16248032
Journal volume & issue
Vol. 16, no. 24
p. 8032

Abstract

Read online

A transpiration-type thermoelectric-power-generating paper based on previously developed carbon nanotube (CNT) composite paper, which is a composite material of CNTs and pulp that can generate thermoelectric power, was developed. The newly developed thermoelectric-power-generating material does not require an external high-temperature heat source due to the ability of paper to absorb liquid through capillary action and heat of vaporization generated when the liquid evaporates. The aim of this study is to investigate the feasibility of realizing the transpiration-type thermoelectric-power-generating paper. To begin with, the type of paper used as raw material for the composite paper was examined, and the fabrication process was modified in order to obtain more efficient liquid absorption based on capillary action. Then, the absorbing ability of the liquid was evaluated. Next, the feasibility of thermoelectric power generation using the heat of vaporization was confirmed. Moreover, for more efficient thermoelectric conversion, multisheet structures were also studied. Through several experiments, the material’s feasibility was verified, and it was confirmed that more power can be easily obtained through the use of multiple sheets. Specifically, a single sample spontaneously generated a temperature difference of up to 1.7 °C due to the heat of vaporization, generating an electromotive force of 36 μV. From the sample with a five-sheet structure, an electromotive force of 356 μV was obtained at a temperature difference of 2 °C. This material can be used in watery environments, such as rivers, lakes, and hot springs, and is expected to become a new energy-harvesting device.

Keywords