Energies (Nov 2024)
Performance and Efficiency Evaluation of a Secondary Loop Integrated Thermal Management System with a Multi-Port Valve for Electric Vehicles
Abstract
Recently, battery electric vehicles (BEVs) have faced various technical challenges, such as reduced driving range due to ambient temperature, slow charging speeds, fire risks, and environmental regulations. This numerical study proposes an integrated thermal management system (ITMS) utilizing R290 refrigerant and a 14-way valve to address these issues, proactively meeting future environmental regulations, simplifying the system, and improving efficiency. The performance evaluation was conducted under high-load operating conditions, including driving and fast charging in various environmental conditions of 35 °C and −10 °C. As a result, the driving efficiency was 4.82 km/kWh in high-temperature conditions (35 °C) and 4.69 km/kWh in low-temperature conditions (−10 °C), which demonstrated higher efficiency than the Octovalve-ITMS applied to the Tesla Model Y. Furthermore, in fast charging tests, the high voltage battery was charged from a 10% to a 90% state of charge in 26 min at 35 °C and in 31 min at −10 °C, outperforming the Octovalve-ITMS-equipped Tesla Model Y’s fast charging time of 27 min under moderate ambient conditions. This result highlights the superior fast-charging performance of the 14-way valve-based ITMS, even under high cooling load conditions.
Keywords