Nutrients (Aug 2023)

Effects of <i>Lactiplantibacillus plantarum</i> GUANKE on Diphenoxylate-Induced Slow Transit Constipation and Gut Microbiota in Mice

  • Yuanming Huang,
  • Yanan Guo,
  • Xianping Li,
  • Yuchun Xiao,
  • Zhihuan Wang,
  • Liqiong Song,
  • Zhihong Ren

DOI
https://doi.org/10.3390/nu15173741
Journal volume & issue
Vol. 15, no. 17
p. 3741

Abstract

Read online

Slow transit constipation (STC) is a prevalent gastrointestinal condition with slow transit, and some probiotics can effectively relieve constipation, but the exact mechanisms have not been fully understood. In this study, we evaluate the impact of Lactiplantibacillus plantarum GUANKE (GUANKE) on diphenoxylate-induced slow transit constipation and speculate on the underlying mechanisms in a mouse model. Administration of L. plantarum GUANKE alleviated constipation indexes, including defecation time, fecal output and water content, and gastrointestinal transit ratio. In addition, GUANKE restored the protein expression of constipation-related intestinal factors (aquaporins (AQPs) and interstitial Cajal cells (ICCs)) in colon tissues measured using immunofluorescence staining; regulated the neurotransmitters and hormones, such as increased levels of 5-hydroxytryptamine, substance P, and motilin; and decreased levels of vasoactive intestinal peptide and nitric oxide in serum, as measured by an ELISA. 16S rRNA and correlation analysis of feces indicated that GUANKE administration effectively reduced constipation-induced Prevotella enrichment and suggested a potential contribution of Prevotella to diphenoxylate-induced STC in mice. GUANKE had no effect on short-chain fatty acids (SCFAs) in cecum content. This study revealed that GUANKE may alleviate constipation in mice through regulating intestinal neurotransmitter and hormone release and altering specific bacterial taxa, rather than by affecting SCFAs and the diversity of microbiota in the gut. Further research is needed to confirm if the findings observed in this study will be consistent in other animal studies or clinical trials.

Keywords