AIMS Mathematics (Jan 2022)

Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator

  • Jia-Bao Liu,
  • Saad Ihsan Butt,
  • Jamshed Nasir,
  • Adnan Aslam ,
  • Asfand Fahad,
  • Jarunee Soontharanon

DOI
https://doi.org/10.3934/math.2022121
Journal volume & issue
Vol. 7, no. 2
pp. 2123 – 2141

Abstract

Read online

We present new Mercer variants of Hermite-Hadamard (HH) type inequalities via Atangana-Baleanu (AB) fractional integral operators pertaining non-local and non-singular kernels. We establish trapezoidal type identities for fractional operator involving non-singular kernel and give Jensen-Mercer (JM) variants of Hermite-Hadamard type inequalities for differentiable mapping Υ possessing convex absolute derivatives. We establish connections of our results with several renowned results in the literature and also give applications to special functions.

Keywords