Toxics (Jan 2024)

In Vitro Metabolism and In Vivo Pharmacokinetics Profiles of Hydroxy-α-Sanshool

  • Jie Meng,
  • Die Qian,
  • Ruo-Lan Li,
  • Wei Peng,
  • Li Ai

DOI
https://doi.org/10.3390/toxics12020100
Journal volume & issue
Vol. 12, no. 2
p. 100

Abstract

Read online

Hydroxy-α-sanshool (HAS) is the predominant active compound in Zanthoxylum bungeanum Maxim (ZBM). Our present work was aimed to explore the in vitro metabolism characteristics, and in vivo pharmacokinetic (PK) profile of HAS. Plasma (human), liver microsomes, and hepatocytes (human, monkey, dog, mouse, and rat) were collected for HAS metabolism studies in vitro and HAS elimination rates in liver microsomes and hepatocytes of different species were investigated. In addition, five recombinant human CYP enzymes were used to identify CYP isoforms of HAS. Finally, the PK properties of HAS in rats in vivo were studied by oral administration (p.o.). The results showed that HAS stably metabolized in human and rat liver microsomes and human hepatocytes, and the binding of HAS to human plasma proteins was nonspecific; HAS has strong inhibitory effects on CYP2C9 and CYP2D6 of human liver microsomes. In addition, in vivo PK study, HAS is rapidly absorbed in rats after oral administration. In conclusion, the in vivo and in vitro metabolic studies of HAS in this study provide data support for its further development and application, and the metabolic profiles of different species can be used as a reference for its safety evaluation.

Keywords