Gels (May 2023)

Graphene Oxide/Styrene-Butadiene Latex Hybrid Aerogel with Improved Mechanical Properties by PEI Grafted GO and CNT

  • Zetian Zhao,
  • Lina Zhang,
  • Yinghu Song,
  • Lichun Ma,
  • Jialiang Li,
  • Min Zhao,
  • Xueliang Ji,
  • Jianfei Gao,
  • Guojun Song,
  • Xiaoru Li

DOI
https://doi.org/10.3390/gels9050419
Journal volume & issue
Vol. 9, no. 5
p. 419

Abstract

Read online

Graphene oxide aerogel (GOA) has wide application prospects due to its low density and high porosity. However, the poor mechanical properties and unstable structure of GOA have limited its practical applications. In this study, polyethyleneimide (PEI) was used to graft onto the surface of GO and carbon nanotubes (CNTs) to improve compatibility with polymers. Composite GOA was prepared by adding styrene-butadiene latex (SBL) to the modified GO and CNTs. The synergistic effect of PEI and SBL, resulted in an aerogel with excellent mechanical properties, compressive resistance, and structural stability. When the ratio of SBL to GO and GO to CNTs was 2:1 and 7:3, respectively, the obtained aerogel performance was the best, and the maximum compressive stress was 784.35% higher than that of GOA. The graft of PEI on the surface of GO and CNT could improve the mechanical properties of the aerogel, with greater improvements observed with grafting onto the surface of GO. Compared with GO/CNT/SBL aerogel without PEI grafting, the maximum stress of GO/CNT–PEI/SBL aerogel increased by 5.57%, that of GO–PEI/CNT/SBL aerogel increased by 20.25%, and that of GO–PEI/CNT–PEI/SBL aerogel increased by 28.99%. This work not only provided a possibility for the practical application of aerogel, but also steered the research of GOA in a new direction.

Keywords