Cancers (Feb 2023)

Repurposing the Bis-Biguanide Alexidine in Combination with Tyrosine Kinase Inhibitors to Eliminate Leukemic Stem/Progenitor Cells in Chronic Myeloid Leukemia

  • Fabien Muselli,
  • Lucas Mourgues,
  • Nathalie Rochet,
  • Marielle Nebout,
  • Agnès Guerci,
  • Els Verhoeyen,
  • Adrien Krug,
  • Laurence Legros,
  • Jean-François Peyron,
  • Didier Mary

DOI
https://doi.org/10.3390/cancers15030995
Journal volume & issue
Vol. 15, no. 3
p. 995

Abstract

Read online

Background & aims: In CML, Leukemic Stem Cells (LSCs) that are insensitive to Tyrosine Kinase Inhibitors are responsible for leukemia maintenance and relapses upon TKI treatment arrest. We previously showed that downregulation of the BMI1 polycomb protein that is crucial for stem/progenitor cells self-renewal induced a CCNG2/dependent proliferation arrest leading to elimination of Chronic Myeloid Leukemia (CML) cells. Unfortunately, as of today, pharmacological inhibition of BMI1 has not made its way to the clinic. Methods: We used the Connectivity Map bioinformatic database to identify pharmacological molecules that could mimick BMI1 silencing, to induce CML cell death. We selected the bis-biguanide Alexidin (ALX) that produced a transcriptomic profile positively correlating with the one obtained after BMI silencing in K562 CML cells. We then evaluated the efficiency of ALX in combination with TKI on CML cells. Results: Here we report that cell growth and clonogenic activity of K562 and LAMA-84 CML cell lines were strongly inhibited by ALX. ALX didn’t modify BCR::ABL1 phosphorylation and didn’t affect BMI1 expression but was able to increase CCNG2 expression leading to autophagic processes that preceed cell death. Besides, ALX could enhance the apoptotic response induced by any Tyrosine Kinase Inhibitors (TKI) of the three generations. We also noted a strong synergism between ALX and TKIs to increase expression of caspase-9 and caspase-3 and induce PARP cleavage, Bad expression and significantly decreased Bcl-xL family member expression. We also observed that the blockage of the mitochondrial respiratory chain by ALX can be associated with inhibition of glycolysis by 2-DG to achieve an enhanced inhibition of K562 proliferation and clonogenicity. ALX specifically affected the differentiation of BCR::ABL1-transduced healthy CD34+ cells but not of mock-infected healthy CD34+ control cells. Importantly, ALX strongly synergized with TKIs to inhibit clonogenicity of primary CML CD34+ cells from diagnosed patients. Long Term Culture of Initiating Cell (LTC-IC) and dilution of the fluorescent marker CFSE allowed us to observe that ALX and Imatinib (IM) partially reduced the number of LSCs by themselves but that the ALX/IM combination drastically reduced this cell compartment. Using an in vivo model of NSG mice intravenously injected with K562-Luciferase transduced CML cells, we showed that ALX combined with IM improved mice survival. Conclusions: Collectively, our results validate the use of ALX bis-biguanide to potentiate the action of conventional TKI treatment as a potential new therapeutic solution to eradicate CML LSCs

Keywords