PLoS ONE (May 2007)

Predicting pneumonia and influenza mortality from morbidity data.

  • Lise Denoeud,
  • Clément Turbelin,
  • Séverine Ansart,
  • Alain-Jacques Valleron,
  • Antoine Flahault,
  • Fabrice Carrat

DOI
https://doi.org/10.1371/journal.pone.0000464
Journal volume & issue
Vol. 2, no. 5
p. e464

Abstract

Read online

BackgroundFew European countries conduct reactive surveillance of influenza mortality, whereas most monitor morbidity.Methodology/principal findingsWe developed a simple model based on Poisson seasonal regression to predict excess cases of pneumonia and influenza mortality during influenza epidemics, based on influenza morbidity data and the dominant types/subtypes of circulating viruses. Epidemics were classified in three levels of mortality burden ("high", "moderate" and "low"). The model was fitted on 14 influenza seasons and was validated on six subsequent influenza seasons. Five out of the six seasons in the validation set were correctly classified. The average absolute difference between observed and predicted mortality was 2.8 per 100,000 (18% of the average excess mortality) and Spearman's rank correlation coefficient was 0.89 (P = 0.05).Conclusions/significanceThe method described here can be used to estimate the influenza mortality burden in countries where specific pneumonia and influenza mortality surveillance data are not available.