Advances in Meteorology (Jan 2021)

Characteristics and Meteorological Factors of Severe Haze Pollution in China

  • Chao He,
  • Song Hong,
  • Hang Mu,
  • Peiyue Tu,
  • Lu Yang,
  • Biqin Ke,
  • Jiayi Huang

DOI
https://doi.org/10.1155/2021/6680564
Journal volume & issue
Vol. 2021

Abstract

Read online

A severe haze pollution incident caused by unfavorable weather conditions and a northern air mass occurred in eastern, northern, northwestern, and southwestern China from January 15 to January 22, 2018. To comparatively analyze variations in PM2.5 pollution, hourly monitoring data and 24 h meteorological data were collected. Air quality observations revealed large spatiotemporal variation in PM2.5 concentrations in Handan, Zhengzhou, Xi’an, Yuncheng, Chengdu, Xiangyang, and Jinan. The daily mean PM2.5 concentrations ranged from 111.35 to 227.23 μg·m−³, with concentration being highest in Zhengzhou. Hourly mean PM2.5 concentration presented multiple U-shaped curves, with higher values at night and lower values during the day. The ratios of PM2.5 to PM10 were large in target cities and the results of multiscale geographic weighted regression model (MGWR) and Pearson correlation coefficients showed that PM2.5 had a significant positive or negative correlation with PM10, CO, NO2, and SO2. The concentration of PM2.5 was closely related to the combustion of fossil fuels and other organic compounds, indicating the large contribution of secondary aerosols to PM2.5 concentrations. The analysis of meteorological conditions showed that low temperature, low wind speed, and high relative humidity could aggravate the accumulation of regional pollutants in winter. Northwestern trajectory clusters were predominant contributions except in Jinan, and the highest PM2.5 concentrations in target cities were associated with short trajectory clusters in winter. The potential sources calculated by Weight Potential Source Contribution Function (WPSCF) and Weight Concentration-Weighted Trajectory (WCWT) models were similar and the highest values of the WPSCF (>0.5) and the WCWT (>100 μg·m−³) were mainly distributed in densely populated, industrial, arid, and semiarid regions.