Journal of Saudi Chemical Society (Dec 2014)

Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto multi-walled carbon nanotubes

  • Iman Mobasherpour,
  • Esmail Salahi,
  • Mohsen Ebrahimi

DOI
https://doi.org/10.1016/j.jscs.2011.09.006
Journal volume & issue
Vol. 18, no. 6
pp. 792 – 801

Abstract

Read online

Release of heavy metals into water as a result of industrial activities may pose a serious threat to the environment. The objective of this study is to assess the uptake of Cu2+ from aqueous solutions onto multi-walled carbon nanotubes (MWCNT). The potential of the t-MWCNT to remove Cu2+ cations from aqueous solutions was investigated in batch reactor under different experimental conditions. The processing parameters such as initial concentration of Cu2+ ions, temperature, and adsorbent mass were also investigated. Copper uptake was quantitatively evaluated using the Langmuir, Freundlich and Dubinin–Kaganer–Radushkevich (DKR) models. In addition, the adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 12.34 mg/g of Cu2+ cations on t-MWCNT. Various thermodynamic parameters, such as ΔG0, ΔH0 and ΔS0 were calculated. The thermodynamics of Cu2+ cations adsorption onto t-MWCNT system pointed at spontaneous and endothermic nature of the process. Using the second-order kinetic constants, the activation energy of adsorption (Ea) was determined as 27.187 kJ/mol according to the Arrhenius equation.

Keywords