Atmospheric Science Letters (Oct 2024)
The detailed moisture transport structure in extreme precipitation on the Tibetan Plateau caused by storm over the Bay of Bengal
Abstract
Abstract The storms over the Bay of Bengal (BoB) often combine with the weather systems such as the South Branch Trough (SBT) and the West Pacific Subtropical High (WPSH) to transport plenty of moisture inducing extreme precipitation on the Tibetan Plateau (TP). Determining the fine moisture structures of storms helps understand mechanism of this kind of extreme precipitation. An extreme precipitation occurred on the TP influenced by storm Rashmi (2008). A Lagrangian approach is scrutinized the forward and backward moisture transport trajectories of Rashmi and the TP, respectively. The moisture source of this extreme precipitation is relatively clear, which comes from the collaborative influence of Rashmi with the southwest jet generated by the SBT and the WPSH. Utilizing a three‐dimensional K‐means clustering method devised in this study, the Rashmi's forward trajectories are classified into three categories, the particles ascending with the northward movement of Rashmi (45%), consistently below 1 km (37.5%), and rapidly ascending into the southwest jet stream (17.5%). Notably, 97.5%, 1.2%, and 91% of these categories impact the TP, respectively. The moisture transport structure of storm is verified by backward tracking of moisture over the TP. In addition, the three‐dimensional moisture trajectories classification method is recommended when trajectories suffer rapid altitude changes.
Keywords