Shock and Vibration (Jan 2020)
Nonlinear Torsional Dynamics of Star Gearing Transmission System of GTF Gearbox
Abstract
Considering time-varying meshing stiffness, comprehensive errors, and piecewise backlash nonlinearities of gear and spline, a torsional nonlinear dynamic model of star gear-rotor coupling transmission system of (Geared Turbofan Engine) GTF aeroengine is established. By using the Runge–Kutta numerical integration method, the dynamic responses are solved, analyzed, and illustrated with the bifurcation parameters including input rotational speed, gear backlash, damping ratio, and comprehensive meshing errors. The motions of the star gearing system and diverse nonlinear dynamic characteristics are identified through global bifurcation, FFT spectra, Poincaré map, and the phase diagram. The results reveal that the star gear-rotor system exhibits abundant torsional nonlinear behaviors, including multiperiodic, quasi-periodic, and chaotic motions. Furthermore, the roads to chaos via quasi-periodicity, period-doubling scenario, and mutation are demonstrated. These results provide an understanding of undesirable torsional dynamic motion for the GTF transmission system and provide a reference for the design and control of gear system.