PLoS Pathogens (Oct 2022)

The effect of Omicron breakthrough infection and extended BNT162b2 booster dosing on neutralization breadth against SARS-CoV-2 variants of concern.

  • Carl Graham,
  • Thomas Lechmere,
  • Aisha Rehman,
  • Jeffrey Seow,
  • Ashwini Kurshan,
  • Isabella Huettner,
  • Thomas J A Maguire,
  • Jerry C H Tam,
  • Daniel Cox,
  • Christopher Ward,
  • Mariusz Racz,
  • Anele Waters,
  • Christine Mant,
  • Michael H Malim,
  • Julie Fox,
  • Katie J Doores

DOI
https://doi.org/10.1371/journal.ppat.1010882
Journal volume & issue
Vol. 18, no. 10
p. e1010882

Abstract

Read online

COVID-19 vaccines are playing a vital role in controlling the COVID-19 pandemic. As SARS-CoV-2 variants encoding mutations in the surface glycoprotein, Spike, continue to emerge, there is increased need to identify immunogens and vaccination regimens that provide the broadest and most durable immune responses. We compared the magnitude and breadth of the neutralizing antibody response, as well as levels of Spike-reactive memory B cells, in individuals receiving a second dose of BNT162b2 at a short (3-4 week) or extended interval (8-12 weeks) and following a third vaccination approximately 6-8 months later. We show that whilst an extended interval between the first two vaccinations can greatly increase the breadth of the immune response and generate a higher proportion of Spike reactive memory B cells, a third vaccination leads to similar levels between the two groups. Furthermore, we show that the third vaccine dose enhances neutralization activity against omicron lineage members BA.1, BA.2 and BA.4/BA.5 and this is further increased following breakthrough infection during the UK omicron wave. These findings are relevant for vaccination strategies in populations where COVID-19 vaccine coverage remains low.