Actuators (May 2024)
Sensor-Based Identification of Singularities in Parallel Manipulators
Abstract
Singularities are configurations where the number of degrees of freedom of a robot changes instantaneously. In parallel manipulators, a singularity could reduce the mobility of the end-effector or produce uncontrolled motions of the mobile platform. Thus, a singularity is a critical problem for mechanical design and model-based control. This paper presents a general sensor-based method to identify singularities in the workspace of parallel manipulators with low computational cost. The proposed experimental method identifies a singularity by measuring sudden changes in the end-effector movements and huge increments in the forces applied by the actuators. This paper uses an inertial measurement unit and a 3D tracking system for measuring the end-effector movements, and current sensors for the forces exerted by the actuators. The proposed sensor-based identification of singularities is adjusted and implemented in three different robots to validate its effectiveness and feasibility for identifying singularities. The case studies are two prototypes for educational purposes—a five-bar mechanism and an L-CaPaMan parallel robot—and a four-degree-of-freedom robot for rehabilitation purposes. The tests showcase its potential as a practical solution for singularity identification in educational and industrial robots.
Keywords