Electrochemistry (Nov 2021)

Electrochemical Properties of Poly(vinylidene fluoride-co-hexafluoropropylene) Gel Electrolytes with High-Concentration Li Salt/Sulfolane for Lithium Batteries

  • Ji-young OCK,
  • Miki FUJISHIRO,
  • Kazuhide UENO,
  • Masayoshi WATANABE,
  • Kaoru DOKKO

DOI
https://doi.org/10.5796/electrochemistry.21-00086
Journal volume & issue
Vol. 89, no. 6
pp. 567 – 572

Abstract

Read online

Combining highly concentrated electrolytes with a polymer network is a valid approach to simultaneously achieve fast Li+ ion transport, high thermal stability, and a wide electrochemical window in a quasi-solid-state form. In this work, flexible gel electrolytes comprising commercially available poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF–HFP) and highly concentrated electrolytes of Li salts/sulfolane (SL) were prepared by a simple solution casting method. The anionic effects of the gel electrolytes on the Li-ion conductivity and charge transfer kinetics at the gel/electrode interface were investigated. The SL-based gel electrolyte with lithium bis(fluorosulfonyl)amide (LiFSA) showed an ionic conductivity of 0.7 mS cm−1 and a high Li transference number (>0.5) at 30 °C. The charge transfer resistance in a [Li/gel/LiCoO2] cell with LiFSA was lower than that of the cells with lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) or LiBF4, indicating faster interfacial charge transfer kinetics in the gel electrolyte with FSA. The Li/LiCoO2 cell with the LiFSA/SL gel electrolyte exhibited a higher capacity than that of the cells with the LiTFSA/SL and LiBF4/SL gel electrolytes. Hence, rationally designed gel electrolytes containing highly concentrated SL-based electrolytes enable the high rate performance of Li batteries.

Keywords