Pathogens (Jun 2023)
Association of <i>CYP2C19, CYP2D6</i> and <i>CYP3A4</i> Genetic Variants on Primaquine Hemolysis in G6PD-Deficient Patients
Abstract
In the Amazon, the treatment for Plasmodium vivax is chloroquine plus primaquine. However, this regimen is limited due to the risk of acute hemolytic anemia in glucose-6-phosphate dehydrogenase deficiency. Primaquine is a prodrug that requires conversion by the CYP2D6 enzyme to be effective against malaria. A series of cases were performed at an infectious diseases reference hospital in the Western Brazilian Amazon. The STANDARD G6PD (SD Biosensor®) assay was used to infer G6PD status and real-time PCR to genotype G6PD, CYP2C19, CYP2D6 and CYP3A4. Eighteen patients were included, of which 55.6% had African A− variant (G202A/A376G), 11.1% African A+ variant (A376G), 5.6% Mediterranean variant (C563T) and 27.8% were wild type. CYP2C19, CYP2D6 and CYP3A4 genotyping showed no statistically significant differences in the frequency of star alleles between the groups G6PD deficient and G6PD normal. Elevated levels of liver and kidney markers in the G6PDd patients were observed in gNM, gRM and gUM of CYP2C19 and CYP2D6 (p < 0.05). Furthermore, in this study there was no influence of CYPs on hemolysis. These findings reinforce the importance of studies on the mapping of G6PD deficiency and genetic variations of CYP2C19, CYP2D6 and CYP3A4. This mapping will allow us to validate the prevalence of CYPs and determine their influence on hemolysis in patients with malaria, helping to decide on the treatment regimen.
Keywords