Journal of Advanced Transportation (Jan 2021)

Factors Identification and Prediction for Mind Wandering Driving Using Machine Learning

  • Ciyun Lin,
  • Hongli Zhang,
  • Bowen Gong,
  • Dayong Wu

DOI
https://doi.org/10.1155/2021/4216215
Journal volume & issue
Vol. 2021

Abstract

Read online

Traffic safety is affected by many complex factors. Mind wandering (MW) is a fatal cause affecting driving safety and is hard to be detected and prevented due to its uncertain and complex occurrence mechanism. The aim of this study was to propose a framework for analyzing and predicting MW based on readily available driving status data. The data used in this study are the single-trip information collected by the questionnaire, which includes drivers’ personal characteristics, contextual information in which MW occurs, and in-vehicle environmental factors. After investigating the extent of factors that influence MW, these chosen factors are used to forecast MW. Based on these results, we select factors reliable to be obtained in real life to forecast MW. To verify that the new factors explored are useful in improving the forecast accuracy, the compared analysis is conducted with the results found by our approach and the existing approaches. We compare results obtained by four machine-learning-enabled forecasting approaches on a real-life data set. The result shows that the factors found in this paper can significantly improve forecast accuracy. The confusion matrix, ROC curves, and AUC are conducted, and the performance of the gradient boosting decision tree algorithm is better than other forecast approaches. The importance rankings of most factors obtained by the Gradient Boosting Decision Tree and questionnaire are the same.