Opinion Dynamics Systems via Biswas–Chatterjee–Sen Model on Solomon Networks
Edmundo Alves Filho,
Francisco Welington Lima,
Tayroni Francisco Alencar Alves,
Gladstone de Alencar Alves,
Joao Antonio Plascak
Affiliations
Edmundo Alves Filho
Dietrich Stauffer Computational Physics Laboratory, Departamento de Física, Universidade Federal do Piauí, Teresina 64049-550, PI, Brazil
Francisco Welington Lima
Dietrich Stauffer Computational Physics Laboratory, Departamento de Física, Universidade Federal do Piauí, Teresina 64049-550, PI, Brazil
Tayroni Francisco Alencar Alves
Dietrich Stauffer Computational Physics Laboratory, Departamento de Física, Universidade Federal do Piauí, Teresina 64049-550, PI, Brazil
Gladstone de Alencar Alves
Departamento de Física, Universidade Estadual do Piauí, Teresina 64002-150, PI, Brazil
Joao Antonio Plascak
Departamento de Física, Centro de Ciências Exatas e da Natureza (CCEN), Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-970, PB, Brazil
The critical properties of a discrete version of opinion dynamics systems, based on the Biswas–Chatterjee–Sen model defined on Solomon networks with both nearest and random neighbors, are investigated through extensive computer simulations. By employing Monte Carlo algorithms on SNs of different sizes, the magnetic-like variables of the model are computed as a function of the noise parameter. Using the finite-size scaling hypothesis, it is observed that the model undergoes a second-order phase transition. The critical transition noise and the respective ratios of the usual critical exponents are computed in the limit of infinite-size networks. The results strongly indicate that the discrete Biswas–Chatterjee–Sen model is in a different universality class from the other lattices and networks, but in the same universality class as the Ising and majority-vote models on the same Solomon networks.