Animal Nutrition (Sep 2022)

Understanding the role of rumen epithelial host-microbe interactions in cattle feed efficiency

  • Sang Weon Na,
  • Le Luo Guan

Journal volume & issue
Vol. 10
pp. 41 – 53

Abstract

Read online

Feed efficiency is one of the economically important traits for the cattle industry that affects profit (feed costs) and the environment (production of manure and methane). Due to that feed efficiency is driven by multi-factors, mechanisms contributing to the animal to animal variation in this trait have not been well defined, limiting the development of precision feeding strategies to improve the herd production efficiency. Rumen microbial fermentation and volatile fatty acids (VFA) production have been recently reported to be associated with cattle feed efficiency, however the roles of rumen epithelial function in feed efficiency are less studied although the rumen epithelium has an important function in VFA absorption and metabolism which can affect host feed efficiency. Rumen epithelium is colonized with a diverse microbial population, termed epimural microbiota, which has proposed functions in tissue development, barrier and inflammation, urea transport, and oxygen scavenging, suggesting that they can affect rumen epithelial functions and subsequently cattle feed efficiency. Especially, prospective functions of epimural microbiota, enhanced rumen immunity and increased rumen epithelial thickness, might contribute to less nutritional requirement for tissue recuperation. Thus, the understanding of the functions of rumen epithelium, epimural microbiota, and rumen epithelial host-microbe interactions is essential to identify their roles in contributing to feed efficiency. In this review, we will focus on to date research findings on the structure of rumen epithelium, epimural microbiota, and epithelial host-microbe interactions together with their functions and how these are associated with feed efficiency, aiming to provide insights on future directions to study rumen epithelial host-microbe interactions and improve the rumen functions in cattle.

Keywords