Arabian Journal of Chemistry (Dec 2023)
Biological evaluation, GC–MS profiling, and molecular docking studies of some essential oils against postharvest pathogens of maize
Abstract
Considering the use of essential oils (EOs) as biopesticides due to their ability to effectively control postharvest pathogens, EOs-based formulations, and coatings became a priority. The present work aimed to screen essential oils from eight different plant species with anti-fungal properties along with the phytochemical analysis and molecular docking insight. Furthermore, the selected essential oil was applied as an edible coating to examine its protective effect against the attack of isolated postharvest pathogens on maize seedlings and rescue the seedling’s growth. Eight EOs were screened for their antimicrobial potential against Fusarium oxysporum and Xanthomonas campestris. Later on, the identification of the chemical constituents of the best-performing essential oil (Bergamot oil) was performed by GC–MS analysis. Different coating formulations consisting of essential oils and chitosan at 0.25% and 0.5% concentrations were applied to maize seeds to protect against postharvest pathogens. Formulation containing the bergamot essential oil showed the highest protective potential against a fungal and bacterial postharvest pathogen of maize under in-vitro conditions. The molecular docking study showed that the linalool and linalyl acetate present in essential oil comprises strong interactions with antifungal target proteins.