Frontiers in Energy Research (Apr 2020)

Integral Effect Test on Top-Slot Break Scenario With 4 Inches Cold Leg Break LOCA in ATLAS Facility

  • Jongrok Kim,
  • Byoung-Uhn Bae,
  • Jae Bong Lee,
  • Yusun Park,
  • Seok Cho,
  • Kyoung-Ho Kang

DOI
https://doi.org/10.3389/fenrg.2020.00057
Journal volume & issue
Vol. 8

Abstract

Read online

An experimental simulation for a loss of coolant accident with a 4-in cold leg top-slot break was performed using ATLAS, an integral effect test facility at the Korea Atomic Energy Research Institute (KAERI), South Korea. The aims of this test are to resolve a safety issue and to validate the thermal hydraulic safety analysis codes for the activity of the 4th ATLAS-Domestic Standard Problem. The related safety issue for this test is that a loop seal clearing and loop seal reformation of APR1400 can lead to a core temperature excursion because of the characteristics of the loop seal geometry. In the experimental results, the core heater temperature slowly increased after loop seal reformation. This increase is attributed to the accumulated steam at the upper head. The accumulated steam increased the pressure and saturated the temperature in the core. The core heater temperature then increased due to the increased saturated temperature. This temperature increase, therefore, was not a core temperature excursion. Sensitivity analysis results using Multidimensional Analysis of Reactor Safety KINS Standard (MARS-KS), which is a best-estimate thermal hydraulic system analysis code, are also presented in this study. In the 4th ATLAS-Domestic Standard Problem, 15 participants performed calculations and sensitivity analyses using various thermal hydraulic safety analysis codes (MARS-KS, SPACE, RELAP5, and TRACE). From this exercise, several parameters that affect the calculation results are brought out. The sensitivity analysis results using MARS-KS with some of these parameters are also presented. The MARS-KS calculation results are similar to the experimental data. The effects of critical flow model, break line modeling, and fine node modeling are also discussed.

Keywords