Novel Spiro-Core Dopant-Free Hole Transporting Material for Planar Inverted Perovskite Solar Cells
Raquel Royo,
José G. Sánchez,
Wenhui Li,
Eugenia Martinez-Ferrero,
Emilio Palomares,
Raquel Andreu,
Santiago Franco
Affiliations
Raquel Royo
Instituto de Nanociencia y Materiales de Aragón (INMA), Departamento de Química Orgánica, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
José G. Sánchez
Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
Wenhui Li
Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
Eugenia Martinez-Ferrero
Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
Emilio Palomares
Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
Raquel Andreu
Instituto de Nanociencia y Materiales de Aragón (INMA), Departamento de Química Orgánica, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
Santiago Franco
Instituto de Nanociencia y Materiales de Aragón (INMA), Departamento de Química Orgánica, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
Hole-transporting materials (HTMs) have demonstrated their crucial role in promoting charge extraction, interface recombination, and device stability in perovskite solar cells (PSCs). Herein, we present the synthesis of a novel dopant-free spiro-type fluorine core-based HTM with four ethoxytriisopropylsilane groups (Syl-SC) for inverted planar perovskite solar cells (iPSCs). The thickness of the Syl-SC influences the performance of iPSCs. The best-performing iPSC is achieved with a 0.8 mg/mL Syl-SC solution (ca. 15 nm thick) and exhibits a power conversion efficiency (PCE) of 15.77%, with Jsc = 20.00 mA/cm2, Voc = 1.006 V, and FF = 80.10%. As compared to devices based on PEDOT:PSS, the iPSCs based on Syl-SC exhibit a higher Voc, leading to a higher PCE. Additionally, it has been found that Syl-SC can more effectively suppress charge interfacial recombination in comparison to PEDOT:PSS, which results in an improvement in fill factor. Therefore, Syl-SC, a facilely processed and efficient hole-transporting material, presents a promising cost-effective alternative for inverted perovskite solar cells.