Artery Research (Nov 2011)

ADVANCES IN ARTERIAL STIFFNESS ASSESSMENT

  • Evelien Hermeling,
  • Robert S. Reneman,
  • Arnold P.G. Hoeks,
  • Koen D. Reesink

DOI
https://doi.org/10.1016/j.artres.2011.10.003
Journal volume & issue
Vol. 5, no. 4

Abstract

Read online

Although the clinical relevance of arterial stiffness is increasingly recognized, the applicability of arterial stiffness for individual cardiovascular risk assessment is hampered due to technical and physiological difficulties. Arterial stiffness is not constant with blood pressure and not constant over the arterial tree. Currently, stiffness is commonly assessed in individuals over a long trajectory and neglects the pressure dependency. To circumvent these problems, we developed a technique to measure pulse wave velocity (PWV) locally using multiple M-line ultrasound. In the common carotid artery, PWV can only be measured using the dicrotic notch of the distension waveform as fiducial time-point, because the systolic foot is subjected to reflective interference. Dicrotic notch PWV provides a measure of stiffness at near systolic pressure level, which is intrinsically different from systolic foot PWV measured at diastolic pressure. To investigate the effect of pressure on local stiffness, we quantified carotid distensibility coefficients for the diastolic and systolic pressure ranges separately. We found that the diastolic-systolic difference in carotid distensibility varies significantly between individuals and is an independent determinant of left ventricular mass index. Moreover, this pressure dependency appears to increase with age (like arterial diameter), suggesting that this property could be used as a marker for structural remodeling of the artery wall. Biomechanically, the pressure dependency of stiffness directly affects pressure and flow waveform characteristics and their phase relation. Ignoring this may lead to overestimation of the impact of wave reflections on central blood pressure. Our work shows that pressure dependency of arterial stiffness can and should be accounted for to evaluate its implication for pressure augmentation and wave separation analysis.

Keywords