Systems and Soft Computing (Dec 2024)
Control model of community elderly recreational exercise assistive robot based on improved dense trajectory algorithm
Abstract
As the number of elderly population in the community grows, more efficient and precise recreation and exercise aids are needed to safeguard their quality of life. The study proposes a control model based on an improved dense trajectory algorithm to enhance the recognition and response capabilities of recreation and exercise assistance robots. The main method of the model is to improve the dense trajectory algorithm to enhance its recognition speed and accuracy for complex and small movements. Specifically, the study deeply refined the control process of a health and exercise assisted robot, and combined action capture to construct a health and exercise assisted robot model. The control model of the health and exercise assisted robot was optimized using an improved dense algorithm. The improved dense trajectory algorithm has feature embedding and attention mechanism, which can supplement the input data of the model, thus enabling more accurate action recognition. The results show that among the five samples, the recreation effectiveness score of the experimental group averaged 8.9, which was significantly higher than that of the control group, which was 7.3. The recognition accuracy has been improved by 2.7 % and 3.9 %, respectively, effectively suppressing the influence of camera motion. After using the improved dense trajectory algorithm, the fitness of the health training assistant robot reached 96.25 % under the same processing time, which is 8.93 % higher than the traditional model's fitness of 87.32 %. In summary, the control model of a community elderly health exercise assistance robot based on improved dense trajectory algorithm has achieved more accurate and faster recognition and response to the actions of the elderly, providing a more efficient technical means for health exercise and improving the health effect of the elderly.