Polymers (Nov 2018)

Application of Industrially Produced Chitosan in the Surface Treatment of Fibre-Based Material: Effect of Drying Method and Number of Coating Layers on Mechanical and Barrier Properties

  • Samir Kopacic,
  • Andrea Walzl,
  • Ulrich Hirn,
  • Armin Zankel,
  • Rudolf Kniely,
  • Erich Leitner,
  • Wolfgang Bauer

DOI
https://doi.org/10.3390/polym10111232
Journal volume & issue
Vol. 10, no. 11
p. 1232

Abstract

Read online

Chitosan is a versatile biopolymer with many interesting functionalities. Its effects on the barrier and mechanical properties of single- or double-coated fibre-based packaging papers in dependence on the applied drying regime were successfully tested. Our investigations revealed chitosan to be a highly robust biopolymer, since the different drying regimes did not alter its contribution to the development of strength and barrier properties of the coated packaging papers. These properties showed a stronger influence of the applied coat weights than of the different drying regimes. The effect of chitosan coatings were quantified by measuring tensile strength (TS), burst strength (BS) and tensile energy absorption (TEA). These revealed that TS, BS and TEA of the coated papers increased significantly. Moreover, the chitosan-coated papers were less permeable against water vapor and air. High grease resistance was observed for double-coated papers, irrespective of the drying regimes. The coated paper surface showed a more hydrophilic character, resulting in lower contact angles and higher water absorption properties. In this study, industrially produced chitosan has been proven to be a renewable, robust biopolymer that can be utilized as an additive to increase strength and the barrier properties of fibre-based materials.

Keywords