PLoS ONE (Jan 2013)

Regulation of c-Fos gene expression by NF-κB: a p65 homodimer binding site in mouse embryonic fibroblasts but not human HEK293 cells.

  • Yu-Cheng Tu,
  • Duen-Yi Huang,
  • Shine-Gwo Shiah,
  • Jang-Shiun Wang,
  • Wan-Wan Lin

DOI
https://doi.org/10.1371/journal.pone.0084062
Journal volume & issue
Vol. 8, no. 12
p. e84062

Abstract

Read online

The immediate early gene c-Fos is reported to be regulated by Elk-1 and cAMP response element-binding protein (CREB), but whether nuclear factor (NF)-κB is also required for controlling c-Fos expression is unclear. In this study, we determined how NF-κB's coordination with Elk/serum response factor (SRF) regulates c-fos transcription. We report that PMA strongly induced c-Fos expression, but tumor necrosis factor (TNF)-α did not. In mouse embryonic fibroblasts, the PMA induction of c-Fos was suppressed by a deficiency in IKKα, IKKβ, IKKγ, or p65. By contrast, in human embryonic kidney 293 cells, PMA induced c-Fos independently of p65. In accordance with these results, we identified an NF-κB binding site in the mouse but not human c-fos promoter. Under PMA stimulation, IKKα/β mediated p65 phosphorylation and the binding of the p65 homodimer to the NF-κB site in the mouse c-fos promoter. Furthermore, our studies demonstrated independent but coordinated functions of the IKKα/β-p65 and extracellular signal-regulated kinase (ERK)-Elk-1 pathways in the PMA induction of c-Fos. Collectively, these results reveal the distinct requirement of NF-κB for mouse and human c-fos regulation. Binding of the p65 homodimer to the κB site was indispensable for mouse c-fos expression, whereas the κB binding site was not present in the human c-fos promoter. Because of an inability to evoke sufficient ERK activation and Elk-1 phosphorylation, TNF-α induces c-Fos more weakly than PMA does in both mouse and human cells.