Remote Sensing (Jan 2025)

Evaluation of HY-2B SMR Sea Surface Temperature Products from 2019 to 2024

  • Ping Liu,
  • Yili Zhao,
  • Wu Zhou,
  • Shishuai Wang

DOI
https://doi.org/10.3390/rs17020300
Journal volume & issue
Vol. 17, no. 2
p. 300

Abstract

Read online

Haiyang 2B (HY-2B), the second Chinese ocean dynamic environment monitoring satellite, has been operational for nearly six years. The scanning microwave radiometer (SMR) onboard HY-2B provides global sea surface temperature (SST) observations. Comprehensive validation of these data is essential before they can be effectively applied. This study evaluates the operational SST product from the SMR, covering the period from 1 January 2019 to 31 August 2024, using direct comparison and extended triple collocation (ETC) methods. The direct comparison assesses bias and root mean square error (RMSE), while ETC analysis estimates the random error of the SST measurement systems and evaluates their ability to detect SST variations. Additionally, the spatial and temporal variations in error characteristics, as well as the crosstalk effects of sea surface wind speed, columnar water vapor, and columnar cloud liquid water, are analyzed. Compared with iQuam SST, the total RMSE of SMR SST for ascending and descending passes are 0.88 °C and 0.85 °C, with total biases of 0.1 °C and −0.08 °C, respectively. ETC analysis indicates that the random errors for ascending and descending passes are 0.87 °C and 0.80 °C, respectively. The SMR’s ability to detect SST variations decreases significantly at high latitudes and near 10°N latitude. Error analysis reveals that the uncertainty in SMR SSTs has increased over time, and the presence of crosstalk effects in SMR SST retrieval has been confirmed.

Keywords