Results in Optics (Feb 2024)

A numerical simulation of novel solid-state dye-sensitized solar cell based on kesterite as the electrolyte

  • A.S. Abdullah,
  • F. Ahmad,
  • M.H.I. Ibrahim,
  • M.H. Ibrahim

Journal volume & issue
Vol. 14
p. 100625

Abstract

Read online

This paper explores the potential of four kesterite and stannite compounds: copper iron tin sulfide (CFTS), copper nitride tin sulfide (CNTS), copper zinc tin sulfide (CZTS), and copper zinc tin selenide (CTZSe), as solid-state p-type materials to replace the liquid electrolyte in dye-sensitized solar cell (DSSC) structures. Using the SCAPS 1-D numerical simulator, we incorporate zinc oxysulfide (ZnOS) as the electron transport layer (ETL) in the proposed DSSC configuration: FTO/ZnOS/N719 dye/kesterite/Au. Our simulations reveal outstanding performance with a 200 nm thickness of CZTSe as the solid-state electrolyte, achieving a conversion efficiency of 12.91 %. This efficiency surpasses that of CZTS (12.20 %), CNTS (12.47 %), and CFTS (5.53 %) at a selected 400 nm dye thickness. In comparison to previous simulation and experimental results, our proposed configurations represent a promising alternative for advancing solid-state DSSC technology. Furthermore, we investigate the influence of kesterite thickness (ranging from 50 nm to 300 nm) with a constant defect density of 1 × 1014 cm−3 on DSSC performance. Our findings indicate almost constant conversion efficiency, with only around a 0.2 % change, demonstrating stable DSSC operation.

Keywords