Antioxidants (Sep 2019)

Formulation of Broccoli Sprout Powder in Gastro-Resistant Capsules Protects against the Acidic pH of the Stomach In Vitro but Does Not Increase Isothiocyanate Bioavailability In Vivo

  • Masuma Zawari,
  • Bettina Poller,
  • Greg Walker,
  • Andree Pearson,
  • Mark Hampton,
  • Anitra C. Carr

DOI
https://doi.org/10.3390/antiox8090359
Journal volume & issue
Vol. 8, no. 9
p. 359

Abstract

Read online

Broccoli sprout powder is a rich source of glucosinolates, which are hydrolysed to isothiocyanates in the presence of the enzyme myrosinase. We showed that in vitro incubation of broccoli sprout powder extract with isolated lymphocytes resulted in the upregulation of transcription factor Nrf2, however, there was no increase in Nrf2 protein levels in lymphocytes isolated 3 h following the ingestion of broccoli sprout powder by healthy volunteers. This highlights the general issue that potential health benefits of food-derived compounds can be compromised by limitations in bioavailability. In vitro experiments showed that the generation of isothiocyanates was reduced when the powder was first exposed to the low pH (1.2) of the stomach and then transferred to the higher pH (6.8) of the intestine. The loss of activity due to pre-exposure to the low stomach pH indicates that formulating the broccoli sprout powder in gastro-resistant formulations should increase that amount of isothiocyanate generated in the intestine for absorption. Gelatin capsules were hand-coated with either Eudragit® L100 or Eudragit® L100-55 and were assessed for their gastro-resistant properties using paracetamol as a model active for dissolution studies. Disintegration and dissolution studies showed that Eudragit® L100-55 coated capsules and DRcapsTM (Capsugel®) failed the United States Pharmacopeia (USP) requirements for gastro-resistant capsules, whereas the Eudragit® L100 coated capsules passed. Five healthy participants were administered 1 g of broccoli sprout powder, ingested either with water or encapsulated in uncoated or gastro-resistant capsules. Urinary excretion of isothiocyanate metabolites over the 24 h period post ingestion was assessed by HPLC. Broccoli sprout powder and uncoated gelatin-encapsulated powder showed comparable excretion of isothiocyanate metabolites (18.4 ± 2.3 and 23.9 ± 2.7 µmol, respectively). The enteric coated capsules provided a significantly longer Tmax than the uncoated gelatin capsules (15.4 ± 2.3 versus 3.7 ± 0.7 h, respectively), indicating protection from disintegration in the stomach, however, the excretion of isothiocyanate metabolites was significantly decreased compared with uncoated capsules (i.e., 8.5 ± 1.1 µmol). The lower in vivo formation or absorption of isothiocyanates observed for the gastro-resistant capsules may be due to participant variation in intestinal pH or transit times, resulting in inappropriate pH conditions or insufficient time for the complete disintegration and dissolution of the capsules.

Keywords