iScience (Oct 2022)

A solution to the challenges of interdisciplinary aggregation and use of specimen-level trait data

  • Meghan A. Balk,
  • John Deck,
  • Kitty F. Emery,
  • Ramona L. Walls,
  • Dana Reuter,
  • Raphael LaFrance,
  • Joaquín Arroyo-Cabrales,
  • Paul Barrett,
  • Jessica Blois,
  • Arianne Boileau,
  • Laura Brenskelle,
  • Nicole R. Cannarozzi,
  • J. Alberto Cruz,
  • Liliana M. Dávalos,
  • Noé U. de la Sancha,
  • Prasiddhi Gyawali,
  • Maggie M. Hantak,
  • Samantha Hopkins,
  • Brooks Kohli,
  • Jessica N. King,
  • Michelle S. Koo,
  • A. Michelle Lawing,
  • Helena Machado,
  • Samantha M. McCrane,
  • Bryan McLean,
  • Michèle E. Morgan,
  • Suzanne Pilaar Birch,
  • Denne Reed,
  • Elizabeth J. Reitz,
  • Neeka Sewnath,
  • Nathan S. Upham,
  • Amelia Villaseñor,
  • Laurel Yohe,
  • Edward B. Davis,
  • Robert P. Guralnick

Journal volume & issue
Vol. 25, no. 10
p. 105101

Abstract

Read online

Summary: Understanding variation of traits within and among species through time and across space is central to many questions in biology. Many resources assemble species-level trait data, but the data and metadata underlying those trait measurements are often not reported. Here, we introduce FuTRES (Functional Trait Resource for Environmental Studies; pronounced few-tress), an online datastore and community resource for individual-level trait reporting that utilizes a semantic framework. FuTRES already stores millions of trait measurements for paleobiological, zooarchaeological, and modern specimens, with a current focus on mammals. We compare dynamically derived extant mammal species' body size measurements in FuTRES with summary values from other compilations, highlighting potential issues with simply reporting a single mean estimate. We then show that individual-level data improve estimates of body mass—including uncertainty—for zooarchaeological specimens. FuTRES facilitates trait data integration and discoverability, accelerating new research agendas, especially scaling from intra- to interspecific trait variability.

Keywords