Mathematics (Jan 2022)

Signal Folding for Efficient Classification of Near-Cyclostationary Biological Signals

  • Tianxiang Zheng,
  • Pavel Loskot

DOI
https://doi.org/10.3390/math10020192
Journal volume & issue
Vol. 10, no. 2
p. 192

Abstract

Read online

The classification of biological signals is important in detecting abnormal conditions in observed biological subjects. The classifiers are trained on feature vectors, which often constitute the parameters of the observed time series data models. Since the feature extraction is usually the most time-consuming step in training a classifier, in this paper, signal folding and the associated folding operator are introduced to reduce the variability in near-cyclostationary biological signals so that these signals can be represented by models that have a lower order. This leads to a substantial reduction in computational complexity, so the classifier can be learned an order of magnitude faster and still maintain its decision accuracy. The performance of different classifiers involving signal folding as a pre-processing step is studied for sleep apnea detection in one-lead ECG signals assuming ARIMA modeling of the time series data. It is shown that the R-peak-based folding of ECG segments has superior performance to other more general, similarity based signal folding methods. The folding order can be optimized for the best classification accuracy. However, signal folding requires precise scaling and alignment of the created signal fragments.

Keywords