<i>Staphylea bumalda</i> Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice by Regulating Inflammatory Cytokines, Oxidative Stress, and Maintaining Gut Homeostasis
Lu Wang,
Sha Long,
Qi Zeng,
Wanrong Dong,
Yaoyao Li,
Jiangtao Su,
Yuxin Chen,
Gao Zhou
Affiliations
Lu Wang
Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
Sha Long
Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
Qi Zeng
Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
Wanrong Dong
Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
Yaoyao Li
Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
Jiangtao Su
Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
Yuxin Chen
Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
Gao Zhou
Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
Staphylea bumalda is a rare medicine and edible shrub native to the temperate regions of Asia, possessing significant medicinal potential. In this study, the components of S. bumalda tender leaves and buds extract (SBE) were analyzed and identified by HPLC and LC/MS method, and the safety of SBE was evaluated through mouse acute toxicity models. The protective effects of SBE on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice were investigated in terms of inflammatory factor levels, oxidative stress, and gut microorganisms. Results showed that hyperoside, kaempferol-3-O-rutinoside, isorhoifolin, and rutin were the main components of the extract, and SBE demonstrated good safety in experimental mice. SBE could alleviate weight losing, disease activity index (DAI) raising, and colon shortening in mice. Pathological section results showed that the inflammatory cell infiltration decreased significantly, and the number of goblet cells increased significantly in the SBE group. After SBE treatment, interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) levels in serum were significantly decreased, and the levels of myeloperoxidase (MPO) and nitric oxide (NO) in colon tissues were significantly decreased. SBE inhibited gut inflammation by increasing Lactobacillus. In summary, SBE played a therapeutic role in UC mice by relieving colon injury, reducing inflammatory factor levels, and maintaining gut flora homeostasis. SBE is expected to become an auxiliary means to participate in the prevention and treatment of UC.