Remote Sensing (Apr 2016)
Stable Imaging and Accuracy Issues of Low-Altitude Unmanned Aerial Vehicle Photogrammetry Systems
Abstract
Stable imaging of an unmanned aerial vehicle (UAV) photogrammetry system is an important issue that affects the data processing and application of the system. Compared with traditional aerial images, the large rotation of roll, pitch, and yaw angles of UAV images decrease image quality and result in image deformation, thereby affecting the ground resolution, overlaps, and the consistency of the stereo models. These factors also cause difficulties in automatic tie point matching, image orientation, and accuracy of aerial triangulation (AT). The issues of large-angle photography of UAV photogrammetry system are discussed and analyzed quantitatively in this paper, and a simple and lightweight three-axis stabilization platform that works with a low-precision integrated inertial navigation system and a three-axis mechanical platform is used to reduce this problem. An experiment was carried out with an airship as the flight platform. Another experimental dataset, which was acquired by the same flight platform without a stabilization platform, was utilized for a comparative test. Experimental results show that the system can effectively isolate the swing of the flying platform. To ensure objective and reliable results, another group of experimental datasets, which were acquired using a fixed-wing UAV platform, was also analyzed. Statistical results of the experimental datasets confirm that stable imaging of a UAV platform can help improve the quality of aerial photography imagery and the accuracy of AT, and potentially improve the application of images acquired by a UAV.
Keywords