Nature Communications (Sep 2024)
Experimental evidence of seismic ruptures initiated by aseismic slip
Abstract
Abstract Seismic faults release the stress accumulated during tectonic movement through rapid ruptures or slow-slip events. The role of slow-slip events is crucial as they impact earthquakes occurrence. However, the mechanisms by which slow-slip affects the failure of frictionally locked regions remain elusive. Here, building on laboratory experiments, we establish that a slow-slip region acts as a nucleation center for seismic rupture, enhancing earthquakes’ frequency. We emulate slow-slip regions by introducing a granular material along part of a laboratory fault. Measuring the fault’s response to shear reveals that the heterogeneity serves as an initial rupture, reducing the fault shear resistance. Additionally, the slow-slip region extends beyond the heterogeneity with increasing normal load, demonstrating that fault composition is not the only requirement for slow-slip. Our results show that slow-slip modifies rupture nucleation dynamics, highlighting the importance of accounting for the evolution of the slow-slip region under varying conditions for seismic hazard mitigation.