Acta Biochimica et Biophysica Sinica (Jul 2024)
Lactate activates CCL18 expression via H3K18 lactylation in macrophages to promote tumorigenesis of ovarian cancer
Abstract
This study investigates the role of lactate in the genesis and progression of ovarian cancer (OV) and explores the underlying mechanisms. Serum lactate levels show a positive correlation with tumor grade and poor prognosis in patients with OV. Bioinformatics analysis identifies CCL18 as a lactate-related gene in OV. CCL18 is up-regulated in cancerous tissues and positively related to serum lactate levels in OV patients. THP-1 cells are exposed to phorbol-12-myristate-13-acetate for M0 macrophage induction. The results of RT-qPCR and ELISA for M1/M2 macrophage-related markers and inflammatory cytokines show that the exposure of lactate to macrophages induces M2 polarization. Based on the coculture of OV cells with macrophages, lactate-treated macrophages induces a significant increase in the proliferation and migration of OV cells. However, these effects can be reversed by silencing of Gpr132 in macrophages or treatment with anti-CCL18 antibody. Experiments using the xenograft model verify that the oncogenic role of lactate in tumor growth and metastasis relies on Gpr132 and CCL18. ChIP-qPCR and luciferase reporter assays reveal that lactate regulates CCL18 expression via H3K18 lactylation. In conclusion, lactate is a potential therapeutic target for OV. It is involved in tumorigenesis by activating CCL18 expression via H3K18 lactylation in macrophages.
Keywords