Bioengineering (Mar 2023)
Reliability of Retinal Layer Annotation with a Novel, High-Resolution Optical Coherence Tomography Device: A Comparative Study
Abstract
Optical coherence tomography (OCT) enables in vivo diagnostics of individual retinal layers in the living human eye. However, improved imaging resolution could aid diagnosis and monitoring of retinal diseases and identify potential new imaging biomarkers. The investigational high-resolution OCT platform (High-Res OCT; 853 nm central wavelength, 3 µm axial-resolution) has an improved axial resolution by shifting the central wavelength and increasing the light source bandwidth compared to a conventional OCT device (880 nm central wavelength, 7 µm axial-resolution). To assess the possible benefit of a higher resolution, we compared the retest reliability of retinal layer annotation from conventional and High-Res OCT, evaluated the use of High-Res OCT in patients with age-related macular degeneration (AMD), and assessed differences of both devices on subjective image quality. Thirty eyes of 30 patients with early/intermediate AMD (iAMD; mean age 75 ± 8 years) and 30 eyes of 30 age-similar subjects without macular changes (62 ± 17 years) underwent identical OCT imaging on both devices. Inter- and intra-reader reliability were analyzed for manual retinal layer annotation using EyeLab. Central OCT B-scans were graded for image quality by two graders and a mean-opinion-score (MOS) was formed and evaluated. Inter- and intra-reader reliability were higher for High-Res OCT (greatest benefit for inter-reader reliability: ganglion cell layer; for intra-reader reliability: retinal nerve fiber layer). High-Res OCT was significantly associated with an improved MOS (MOS 9/8, Z-value = 5.4, p p < 0.01). The retinal pigment epithelium drusen complex showed a trend towards improved retest reliability in High-Res OCT in iAMD eyes but without statistical significance. Improved axial resolution of the High-Res OCT benefits retest reliability of retinal layer annotation and improves perceived image quality and resolution. Automated image analysis algorithms could also benefit from the increased image resolution.
Keywords