Scientific Reports (Mar 2024)

Multi-trait selection for nutritional and physiological quality of cacao genotypes in irrigated and non-irrigated environments

  • Maurício S. Araújo,
  • Saulo F. S. Chaves,
  • Guilherme R. Pereira,
  • Matheus H. D. Guimarães,
  • Andressa K. S. Alves,
  • Luiz Antônio S. Dias,
  • Carlos A. S. Souza,
  • Marco A. G. Aguilar

DOI
https://doi.org/10.1038/s41598-024-56556-7
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Water is a scarce, strategic resource and the most important input for economic development, especially in agricultural countries such as Brazil. Cocoa production is directly related to water availability, and, as climate changes, selecting drought-tolerant genotypes is vital to keep cacao crops sustainable. Here, we evaluated cacao genotypes under irrigated and water-stressed conditions and selected drought-tolerant ones based on nutritional and physiological traits. Thirty-nine genotypes were monitored for three years for agronomic traits and higher fruit yield. After this evaluation, the 18 most promising genotypes were evaluated in a randomized block design, under a 2 (with and without irrigation) $$\times$$ × 18 (genotypes) factorial arrangement, with three replicates and five plants per plot. We evaluated seven physiological and 11 nutritional traits, selecting genotypes based on the Genotype-by-Trait Biplot approach. Significant effects (p < 0.05) were observed for the nutritional traits N, P, Mg, S, Zn, Cu, Mn and for the physiological traits CO2 assimilation rate (A), stomatal conductance (gs), transpiration (E), intercellular and atmospheric CO2 concentrations (Ci/Ca), intrinsic water use efficiency (A/gs), instantaneous water use efficiency (A/E), and instantaneous carboxylation efficiency (A/Ci), as determined by analysis of variance. The genotype $$\times$$ × irrigation treatment interaction was significant (p < 0.05) for the traits A, gs, and E. Genotypes CP 41, CP 43, and CCN 51 exhibited superior performance for both nutritional and physiological traits (A, gs, and E). In the irrigated environment, CP 41 showed superiority in traits such as P, A/E, A/gs, Mn, S, and Zn. Conversely, under non-irrigated conditions, CP 43 exhibited better performance in nutritional properties, specifically Mn, Mg, and Zn. Notably, in both irrigated and non-irrigated environments, CCN 51 excelled in key physiological traits, including A/Ci, A/E, and A/gs. This robust performance across diverse conditions suggests that these three genotypes possess physiological mechanisms to endure water-stressed conditions. Our research can generate valuable insights into these genotypes informing suitable choices for cocoa cultivation, especially in the context of global climate change.