Solid Earth (Apr 2021)
Emplacement of “exotic” Zechstein slivers along the inverted Sontra Graben (northern Hessen, Germany): clues from balanced cross sections and geometrical forward modeling
Abstract
Lens-shaped slivers of Permian (Zechstein) amid Triassic units appearing along the master fault of the Sontra Graben in central Germany on the southern margin of the Central European Basin System (CEBS) were studied by means of detailed map analysis, a semi-quantitative forward model, and two balanced cross sections. We show how partial reactivation of the graben's main normal fault and shortcut thrusting in the footwall during inversion, combined with a specific fault geometry involving flats in low-shear-strength horizons, can produce the observed slivers of “exotic” Zechstein. This conceptual model implies that the Sontra Graben was created by about 1200 m of extension followed by some 1000 m of contraction, resulting in the few hundred meters of net extension observed today. Gentle dips and comparatively extensive exposure of some slivers suggest they are backthrust onto the reactivated normal fault's hanging wall, an interpretation corroborated in one location by shallow drilling. Backthrusting appears to have wedged some Zechstein slivers into incompetent Triassic units of the hanging wall. Based on regional correlation, extension most likely occurred in Late Triassic to Early Cretaceous time, while the contraction is almost certainly of Late Cretaceous age. The main aim of this paper is to describe an uncommon structural feature that we interpret to originate from inversion tectonics in an evaporite-bearing succession with multiple detachment horizons but without the presence of thick salt.